metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.18D14, (D4×C14)⋊14C4, (C2×D4)⋊6Dic7, (C2×Dic7)⋊18D4, C14.101(C4×D4), C2.18(D4×Dic7), (C22×D4).6D7, C23⋊2(C2×Dic7), C14.67C22≀C2, (C23×Dic7)⋊2C2, C22.120(D4×D7), C2.5(C23⋊D14), (C22×C14).109D4, (C22×C4).151D14, C23.43(C7⋊D4), C7⋊5(C23.23D4), C14.128(C4⋊D4), C22⋊1(C23.D7), C14.C42⋊44C2, C2.7(Dic7⋊D4), (C23×C14).46C22, C23.305(C22×D7), C22.61(D4⋊2D7), (C22×C14).365C23, (C22×C28).394C22, C22.51(C22×Dic7), C14.83(C22.D4), C2.5(C23.18D14), (C22×Dic7).196C22, (C2×C28)⋊22(C2×C4), (D4×C2×C14).11C2, (C2×C4)⋊3(C2×Dic7), (C22×C14)⋊7(C2×C4), (C2×C23.D7)⋊9C2, (C2×C14)⋊3(C22⋊C4), (C2×C14).377(C2×D4), C14.75(C2×C22⋊C4), C22.91(C2×C7⋊D4), C2.11(C2×C23.D7), (C2×C14).161(C4○D4), (C2×C14).196(C22×C4), SmallGroup(448,754)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.18D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=1, f2=b, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 1044 in 286 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C23.23D4, C23.D7, C22×Dic7, C22×Dic7, C22×C28, D4×C14, D4×C14, C23×C14, C14.C42, C2×C23.D7, C2×C23.D7, C23×Dic7, D4×C2×C14, C24.18D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic7, D14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C2×Dic7, C7⋊D4, C22×D7, C23.23D4, C23.D7, D4×D7, D4⋊2D7, C22×Dic7, C2×C7⋊D4, D4×Dic7, C23.18D14, C23⋊D14, Dic7⋊D4, C2×C23.D7, C24.18D14
(1 152)(2 96)(3 154)(4 98)(5 142)(6 86)(7 144)(8 88)(9 146)(10 90)(11 148)(12 92)(13 150)(14 94)(15 64)(16 106)(17 66)(18 108)(19 68)(20 110)(21 70)(22 112)(23 58)(24 100)(25 60)(26 102)(27 62)(28 104)(29 54)(30 126)(31 56)(32 114)(33 44)(34 116)(35 46)(36 118)(37 48)(38 120)(39 50)(40 122)(41 52)(42 124)(43 129)(45 131)(47 133)(49 135)(51 137)(53 139)(55 127)(57 75)(59 77)(61 79)(63 81)(65 83)(67 71)(69 73)(72 109)(74 111)(76 99)(78 101)(80 103)(82 105)(84 107)(85 219)(87 221)(89 223)(91 211)(93 213)(95 215)(97 217)(113 128)(115 130)(117 132)(119 134)(121 136)(123 138)(125 140)(141 218)(143 220)(145 222)(147 224)(149 212)(151 214)(153 216)(155 187)(156 172)(157 189)(158 174)(159 191)(160 176)(161 193)(162 178)(163 195)(164 180)(165 183)(166 182)(167 185)(168 170)(169 203)(171 205)(173 207)(175 209)(177 197)(179 199)(181 201)(184 202)(186 204)(188 206)(190 208)(192 210)(194 198)(196 200)
(1 163)(2 164)(3 165)(4 166)(5 167)(6 168)(7 155)(8 156)(9 157)(10 158)(11 159)(12 160)(13 161)(14 162)(15 113)(16 114)(17 115)(18 116)(19 117)(20 118)(21 119)(22 120)(23 121)(24 122)(25 123)(26 124)(27 125)(28 126)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 99)(40 100)(41 101)(42 102)(43 83)(44 84)(45 71)(46 72)(47 73)(48 74)(49 75)(50 76)(51 77)(52 78)(53 79)(54 80)(55 81)(56 82)(57 135)(58 136)(59 137)(60 138)(61 139)(62 140)(63 127)(64 128)(65 129)(66 130)(67 131)(68 132)(69 133)(70 134)(85 169)(86 170)(87 171)(88 172)(89 173)(90 174)(91 175)(92 176)(93 177)(94 178)(95 179)(96 180)(97 181)(98 182)(141 184)(142 185)(143 186)(144 187)(145 188)(146 189)(147 190)(148 191)(149 192)(150 193)(151 194)(152 195)(153 196)(154 183)(197 213)(198 214)(199 215)(200 216)(201 217)(202 218)(203 219)(204 220)(205 221)(206 222)(207 223)(208 224)(209 211)(210 212)
(1 156)(2 157)(3 158)(4 159)(5 160)(6 161)(7 162)(8 163)(9 164)(10 165)(11 166)(12 167)(13 168)(14 155)(15 49)(16 50)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 110)(30 111)(31 112)(32 99)(33 100)(34 101)(35 102)(36 103)(37 104)(38 105)(39 106)(40 107)(41 108)(42 109)(57 128)(58 129)(59 130)(60 131)(61 132)(62 133)(63 134)(64 135)(65 136)(66 137)(67 138)(68 139)(69 140)(70 127)(71 123)(72 124)(73 125)(74 126)(75 113)(76 114)(77 115)(78 116)(79 117)(80 118)(81 119)(82 120)(83 121)(84 122)(85 192)(86 193)(87 194)(88 195)(89 196)(90 183)(91 184)(92 185)(93 186)(94 187)(95 188)(96 189)(97 190)(98 191)(141 175)(142 176)(143 177)(144 178)(145 179)(146 180)(147 181)(148 182)(149 169)(150 170)(151 171)(152 172)(153 173)(154 174)(197 220)(198 221)(199 222)(200 223)(201 224)(202 211)(203 212)(204 213)(205 214)(206 215)(207 216)(208 217)(209 218)(210 219)
(1 215)(2 216)(3 217)(4 218)(5 219)(6 220)(7 221)(8 222)(9 223)(10 224)(11 211)(12 212)(13 213)(14 214)(15 82)(16 83)(17 84)(18 71)(19 72)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 140)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 138)(42 139)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(49 120)(50 121)(51 122)(52 123)(53 124)(54 125)(55 126)(56 113)(57 112)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(85 142)(86 143)(87 144)(88 145)(89 146)(90 147)(91 148)(92 149)(93 150)(94 151)(95 152)(96 153)(97 154)(98 141)(155 205)(156 206)(157 207)(158 208)(159 209)(160 210)(161 197)(162 198)(163 199)(164 200)(165 201)(166 202)(167 203)(168 204)(169 185)(170 186)(171 187)(172 188)(173 189)(174 190)(175 191)(176 192)(177 193)(178 194)(179 195)(180 196)(181 183)(182 184)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 37 163 111)(2 36 164 110)(3 35 165 109)(4 34 166 108)(5 33 167 107)(6 32 168 106)(7 31 155 105)(8 30 156 104)(9 29 157 103)(10 42 158 102)(11 41 159 101)(12 40 160 100)(13 39 161 99)(14 38 162 112)(15 178 113 94)(16 177 114 93)(17 176 115 92)(18 175 116 91)(19 174 117 90)(20 173 118 89)(21 172 119 88)(22 171 120 87)(23 170 121 86)(24 169 122 85)(25 182 123 98)(26 181 124 97)(27 180 125 96)(28 179 126 95)(43 150 83 193)(44 149 84 192)(45 148 71 191)(46 147 72 190)(47 146 73 189)(48 145 74 188)(49 144 75 187)(50 143 76 186)(51 142 77 185)(52 141 78 184)(53 154 79 183)(54 153 80 196)(55 152 81 195)(56 151 82 194)(57 214 135 198)(58 213 136 197)(59 212 137 210)(60 211 138 209)(61 224 139 208)(62 223 140 207)(63 222 127 206)(64 221 128 205)(65 220 129 204)(66 219 130 203)(67 218 131 202)(68 217 132 201)(69 216 133 200)(70 215 134 199)
G:=sub<Sym(224)| (1,152)(2,96)(3,154)(4,98)(5,142)(6,86)(7,144)(8,88)(9,146)(10,90)(11,148)(12,92)(13,150)(14,94)(15,64)(16,106)(17,66)(18,108)(19,68)(20,110)(21,70)(22,112)(23,58)(24,100)(25,60)(26,102)(27,62)(28,104)(29,54)(30,126)(31,56)(32,114)(33,44)(34,116)(35,46)(36,118)(37,48)(38,120)(39,50)(40,122)(41,52)(42,124)(43,129)(45,131)(47,133)(49,135)(51,137)(53,139)(55,127)(57,75)(59,77)(61,79)(63,81)(65,83)(67,71)(69,73)(72,109)(74,111)(76,99)(78,101)(80,103)(82,105)(84,107)(85,219)(87,221)(89,223)(91,211)(93,213)(95,215)(97,217)(113,128)(115,130)(117,132)(119,134)(121,136)(123,138)(125,140)(141,218)(143,220)(145,222)(147,224)(149,212)(151,214)(153,216)(155,187)(156,172)(157,189)(158,174)(159,191)(160,176)(161,193)(162,178)(163,195)(164,180)(165,183)(166,182)(167,185)(168,170)(169,203)(171,205)(173,207)(175,209)(177,197)(179,199)(181,201)(184,202)(186,204)(188,206)(190,208)(192,210)(194,198)(196,200), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,155)(8,156)(9,157)(10,158)(11,159)(12,160)(13,161)(14,162)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,99)(40,100)(41,101)(42,102)(43,83)(44,84)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,127)(64,128)(65,129)(66,130)(67,131)(68,132)(69,133)(70,134)(85,169)(86,170)(87,171)(88,172)(89,173)(90,174)(91,175)(92,176)(93,177)(94,178)(95,179)(96,180)(97,181)(98,182)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,183)(197,213)(198,214)(199,215)(200,216)(201,217)(202,218)(203,219)(204,220)(205,221)(206,222)(207,223)(208,224)(209,211)(210,212), (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,155)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,110)(30,111)(31,112)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,127)(71,123)(72,124)(73,125)(74,126)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122)(85,192)(86,193)(87,194)(88,195)(89,196)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,190)(98,191)(141,175)(142,176)(143,177)(144,178)(145,179)(146,180)(147,181)(148,182)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(197,220)(198,221)(199,222)(200,223)(201,224)(202,211)(203,212)(204,213)(205,214)(206,215)(207,216)(208,217)(209,218)(210,219), (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,211)(12,212)(13,213)(14,214)(15,82)(16,83)(17,84)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,140)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,124)(54,125)(55,126)(56,113)(57,112)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(85,142)(86,143)(87,144)(88,145)(89,146)(90,147)(91,148)(92,149)(93,150)(94,151)(95,152)(96,153)(97,154)(98,141)(155,205)(156,206)(157,207)(158,208)(159,209)(160,210)(161,197)(162,198)(163,199)(164,200)(165,201)(166,202)(167,203)(168,204)(169,185)(170,186)(171,187)(172,188)(173,189)(174,190)(175,191)(176,192)(177,193)(178,194)(179,195)(180,196)(181,183)(182,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,37,163,111)(2,36,164,110)(3,35,165,109)(4,34,166,108)(5,33,167,107)(6,32,168,106)(7,31,155,105)(8,30,156,104)(9,29,157,103)(10,42,158,102)(11,41,159,101)(12,40,160,100)(13,39,161,99)(14,38,162,112)(15,178,113,94)(16,177,114,93)(17,176,115,92)(18,175,116,91)(19,174,117,90)(20,173,118,89)(21,172,119,88)(22,171,120,87)(23,170,121,86)(24,169,122,85)(25,182,123,98)(26,181,124,97)(27,180,125,96)(28,179,126,95)(43,150,83,193)(44,149,84,192)(45,148,71,191)(46,147,72,190)(47,146,73,189)(48,145,74,188)(49,144,75,187)(50,143,76,186)(51,142,77,185)(52,141,78,184)(53,154,79,183)(54,153,80,196)(55,152,81,195)(56,151,82,194)(57,214,135,198)(58,213,136,197)(59,212,137,210)(60,211,138,209)(61,224,139,208)(62,223,140,207)(63,222,127,206)(64,221,128,205)(65,220,129,204)(66,219,130,203)(67,218,131,202)(68,217,132,201)(69,216,133,200)(70,215,134,199)>;
G:=Group( (1,152)(2,96)(3,154)(4,98)(5,142)(6,86)(7,144)(8,88)(9,146)(10,90)(11,148)(12,92)(13,150)(14,94)(15,64)(16,106)(17,66)(18,108)(19,68)(20,110)(21,70)(22,112)(23,58)(24,100)(25,60)(26,102)(27,62)(28,104)(29,54)(30,126)(31,56)(32,114)(33,44)(34,116)(35,46)(36,118)(37,48)(38,120)(39,50)(40,122)(41,52)(42,124)(43,129)(45,131)(47,133)(49,135)(51,137)(53,139)(55,127)(57,75)(59,77)(61,79)(63,81)(65,83)(67,71)(69,73)(72,109)(74,111)(76,99)(78,101)(80,103)(82,105)(84,107)(85,219)(87,221)(89,223)(91,211)(93,213)(95,215)(97,217)(113,128)(115,130)(117,132)(119,134)(121,136)(123,138)(125,140)(141,218)(143,220)(145,222)(147,224)(149,212)(151,214)(153,216)(155,187)(156,172)(157,189)(158,174)(159,191)(160,176)(161,193)(162,178)(163,195)(164,180)(165,183)(166,182)(167,185)(168,170)(169,203)(171,205)(173,207)(175,209)(177,197)(179,199)(181,201)(184,202)(186,204)(188,206)(190,208)(192,210)(194,198)(196,200), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,155)(8,156)(9,157)(10,158)(11,159)(12,160)(13,161)(14,162)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,99)(40,100)(41,101)(42,102)(43,83)(44,84)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,127)(64,128)(65,129)(66,130)(67,131)(68,132)(69,133)(70,134)(85,169)(86,170)(87,171)(88,172)(89,173)(90,174)(91,175)(92,176)(93,177)(94,178)(95,179)(96,180)(97,181)(98,182)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,183)(197,213)(198,214)(199,215)(200,216)(201,217)(202,218)(203,219)(204,220)(205,221)(206,222)(207,223)(208,224)(209,211)(210,212), (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,155)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,110)(30,111)(31,112)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,127)(71,123)(72,124)(73,125)(74,126)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122)(85,192)(86,193)(87,194)(88,195)(89,196)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,190)(98,191)(141,175)(142,176)(143,177)(144,178)(145,179)(146,180)(147,181)(148,182)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(197,220)(198,221)(199,222)(200,223)(201,224)(202,211)(203,212)(204,213)(205,214)(206,215)(207,216)(208,217)(209,218)(210,219), (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,211)(12,212)(13,213)(14,214)(15,82)(16,83)(17,84)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,140)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,121)(51,122)(52,123)(53,124)(54,125)(55,126)(56,113)(57,112)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(85,142)(86,143)(87,144)(88,145)(89,146)(90,147)(91,148)(92,149)(93,150)(94,151)(95,152)(96,153)(97,154)(98,141)(155,205)(156,206)(157,207)(158,208)(159,209)(160,210)(161,197)(162,198)(163,199)(164,200)(165,201)(166,202)(167,203)(168,204)(169,185)(170,186)(171,187)(172,188)(173,189)(174,190)(175,191)(176,192)(177,193)(178,194)(179,195)(180,196)(181,183)(182,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,37,163,111)(2,36,164,110)(3,35,165,109)(4,34,166,108)(5,33,167,107)(6,32,168,106)(7,31,155,105)(8,30,156,104)(9,29,157,103)(10,42,158,102)(11,41,159,101)(12,40,160,100)(13,39,161,99)(14,38,162,112)(15,178,113,94)(16,177,114,93)(17,176,115,92)(18,175,116,91)(19,174,117,90)(20,173,118,89)(21,172,119,88)(22,171,120,87)(23,170,121,86)(24,169,122,85)(25,182,123,98)(26,181,124,97)(27,180,125,96)(28,179,126,95)(43,150,83,193)(44,149,84,192)(45,148,71,191)(46,147,72,190)(47,146,73,189)(48,145,74,188)(49,144,75,187)(50,143,76,186)(51,142,77,185)(52,141,78,184)(53,154,79,183)(54,153,80,196)(55,152,81,195)(56,151,82,194)(57,214,135,198)(58,213,136,197)(59,212,137,210)(60,211,138,209)(61,224,139,208)(62,223,140,207)(63,222,127,206)(64,221,128,205)(65,220,129,204)(66,219,130,203)(67,218,131,202)(68,217,132,201)(69,216,133,200)(70,215,134,199) );
G=PermutationGroup([[(1,152),(2,96),(3,154),(4,98),(5,142),(6,86),(7,144),(8,88),(9,146),(10,90),(11,148),(12,92),(13,150),(14,94),(15,64),(16,106),(17,66),(18,108),(19,68),(20,110),(21,70),(22,112),(23,58),(24,100),(25,60),(26,102),(27,62),(28,104),(29,54),(30,126),(31,56),(32,114),(33,44),(34,116),(35,46),(36,118),(37,48),(38,120),(39,50),(40,122),(41,52),(42,124),(43,129),(45,131),(47,133),(49,135),(51,137),(53,139),(55,127),(57,75),(59,77),(61,79),(63,81),(65,83),(67,71),(69,73),(72,109),(74,111),(76,99),(78,101),(80,103),(82,105),(84,107),(85,219),(87,221),(89,223),(91,211),(93,213),(95,215),(97,217),(113,128),(115,130),(117,132),(119,134),(121,136),(123,138),(125,140),(141,218),(143,220),(145,222),(147,224),(149,212),(151,214),(153,216),(155,187),(156,172),(157,189),(158,174),(159,191),(160,176),(161,193),(162,178),(163,195),(164,180),(165,183),(166,182),(167,185),(168,170),(169,203),(171,205),(173,207),(175,209),(177,197),(179,199),(181,201),(184,202),(186,204),(188,206),(190,208),(192,210),(194,198),(196,200)], [(1,163),(2,164),(3,165),(4,166),(5,167),(6,168),(7,155),(8,156),(9,157),(10,158),(11,159),(12,160),(13,161),(14,162),(15,113),(16,114),(17,115),(18,116),(19,117),(20,118),(21,119),(22,120),(23,121),(24,122),(25,123),(26,124),(27,125),(28,126),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,99),(40,100),(41,101),(42,102),(43,83),(44,84),(45,71),(46,72),(47,73),(48,74),(49,75),(50,76),(51,77),(52,78),(53,79),(54,80),(55,81),(56,82),(57,135),(58,136),(59,137),(60,138),(61,139),(62,140),(63,127),(64,128),(65,129),(66,130),(67,131),(68,132),(69,133),(70,134),(85,169),(86,170),(87,171),(88,172),(89,173),(90,174),(91,175),(92,176),(93,177),(94,178),(95,179),(96,180),(97,181),(98,182),(141,184),(142,185),(143,186),(144,187),(145,188),(146,189),(147,190),(148,191),(149,192),(150,193),(151,194),(152,195),(153,196),(154,183),(197,213),(198,214),(199,215),(200,216),(201,217),(202,218),(203,219),(204,220),(205,221),(206,222),(207,223),(208,224),(209,211),(210,212)], [(1,156),(2,157),(3,158),(4,159),(5,160),(6,161),(7,162),(8,163),(9,164),(10,165),(11,166),(12,167),(13,168),(14,155),(15,49),(16,50),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,110),(30,111),(31,112),(32,99),(33,100),(34,101),(35,102),(36,103),(37,104),(38,105),(39,106),(40,107),(41,108),(42,109),(57,128),(58,129),(59,130),(60,131),(61,132),(62,133),(63,134),(64,135),(65,136),(66,137),(67,138),(68,139),(69,140),(70,127),(71,123),(72,124),(73,125),(74,126),(75,113),(76,114),(77,115),(78,116),(79,117),(80,118),(81,119),(82,120),(83,121),(84,122),(85,192),(86,193),(87,194),(88,195),(89,196),(90,183),(91,184),(92,185),(93,186),(94,187),(95,188),(96,189),(97,190),(98,191),(141,175),(142,176),(143,177),(144,178),(145,179),(146,180),(147,181),(148,182),(149,169),(150,170),(151,171),(152,172),(153,173),(154,174),(197,220),(198,221),(199,222),(200,223),(201,224),(202,211),(203,212),(204,213),(205,214),(206,215),(207,216),(208,217),(209,218),(210,219)], [(1,215),(2,216),(3,217),(4,218),(5,219),(6,220),(7,221),(8,222),(9,223),(10,224),(11,211),(12,212),(13,213),(14,214),(15,82),(16,83),(17,84),(18,71),(19,72),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,140),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,138),(42,139),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(49,120),(50,121),(51,122),(52,123),(53,124),(54,125),(55,126),(56,113),(57,112),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(85,142),(86,143),(87,144),(88,145),(89,146),(90,147),(91,148),(92,149),(93,150),(94,151),(95,152),(96,153),(97,154),(98,141),(155,205),(156,206),(157,207),(158,208),(159,209),(160,210),(161,197),(162,198),(163,199),(164,200),(165,201),(166,202),(167,203),(168,204),(169,185),(170,186),(171,187),(172,188),(173,189),(174,190),(175,191),(176,192),(177,193),(178,194),(179,195),(180,196),(181,183),(182,184)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,37,163,111),(2,36,164,110),(3,35,165,109),(4,34,166,108),(5,33,167,107),(6,32,168,106),(7,31,155,105),(8,30,156,104),(9,29,157,103),(10,42,158,102),(11,41,159,101),(12,40,160,100),(13,39,161,99),(14,38,162,112),(15,178,113,94),(16,177,114,93),(17,176,115,92),(18,175,116,91),(19,174,117,90),(20,173,118,89),(21,172,119,88),(22,171,120,87),(23,170,121,86),(24,169,122,85),(25,182,123,98),(26,181,124,97),(27,180,125,96),(28,179,126,95),(43,150,83,193),(44,149,84,192),(45,148,71,191),(46,147,72,190),(47,146,73,189),(48,145,74,188),(49,144,75,187),(50,143,76,186),(51,142,77,185),(52,141,78,184),(53,154,79,183),(54,153,80,196),(55,152,81,195),(56,151,82,194),(57,214,135,198),(58,213,136,197),(59,212,137,210),(60,211,138,209),(61,224,139,208),(62,223,140,207),(63,222,127,206),(64,221,128,205),(65,220,129,204),(66,219,130,203),(67,218,131,202),(68,217,132,201),(69,216,133,200),(70,215,134,199)]])
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | ··· | 4J | 4K | 4L | 4M | 4N | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AS | 28A | ··· | 28L |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 14 | ··· | 14 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | C4○D4 | D14 | Dic7 | D14 | C7⋊D4 | D4×D7 | D4⋊2D7 |
kernel | C24.18D14 | C14.C42 | C2×C23.D7 | C23×Dic7 | D4×C2×C14 | D4×C14 | C2×Dic7 | C22×C14 | C22×D4 | C2×C14 | C22×C4 | C2×D4 | C24 | C23 | C22 | C22 |
# reps | 1 | 2 | 3 | 1 | 1 | 8 | 4 | 4 | 3 | 4 | 3 | 12 | 6 | 24 | 6 | 6 |
Matrix representation of C24.18D14 ►in GL6(𝔽29)
18 | 14 | 0 | 0 | 0 | 0 |
8 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 16 |
0 | 0 | 0 | 0 | 21 | 19 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
25 | 19 | 0 | 0 | 0 | 0 |
15 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 5 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 23 | 1 |
25 | 19 | 0 | 0 | 0 | 0 |
16 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 16 | 0 | 0 |
0 | 0 | 15 | 22 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 14 | 17 |
G:=sub<GL(6,GF(29))| [18,8,0,0,0,0,14,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,21,0,0,0,0,16,19],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[25,15,0,0,0,0,19,1,0,0,0,0,0,0,1,5,0,0,0,0,4,21,0,0,0,0,0,0,28,23,0,0,0,0,0,1],[25,16,0,0,0,0,19,4,0,0,0,0,0,0,7,15,0,0,0,0,16,22,0,0,0,0,0,0,12,14,0,0,0,0,0,17] >;
C24.18D14 in GAP, Magma, Sage, TeX
C_2^4._{18}D_{14}
% in TeX
G:=Group("C2^4.18D14");
// GroupNames label
G:=SmallGroup(448,754);
// by ID
G=gap.SmallGroup(448,754);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,422,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=1,f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations